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"Technology does not drive change at all. 
Technology merely enables change. It's our 
collective cultural response to the options and 
opportunities presented by technology that drives 
change."

Paul Saffo
Institute for the Future
Menlo Park, California
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”It’s hard to make predictions, especially about the 
future."

Yogi Berra
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Overview
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• Retrospective: changes in the 1990s
• Extrapolation to the near future up to 2010
• The end of Moore’s Law in about 2020
• Beyond 2025
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Things that did not happen in the 
last five years

1992 predictions (after Forest Baskett, SGI):
• TV and PC converge
• interactive TV
• video servers instead of video stores
• Apple/IBM/Motorola
• Intel makes a mistake
• MPPs go mainstream
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1990s: Technology

In the 1980’s there have been fundamental 
changes in the microprocessor development 
(“killer micros”)
— dramatic increase in number of transistors   

available per chip
— architectural advances including the use of 

RISC ideas, pipelining and caches
— as a result CPU performance has improved by 

a factor of 1.5 to 2.0 per year
Maturation in the late 80s
Full impact in the early 90s

6



7CS267, UC Berkeley

Moore’s Law
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Impact of Moore’s Law on HPC
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TOP500 List

• Published twice a year with the 500 most powerful 
supercomputers in actual use

• Ranked according to LINPACK R_max
• Data available since 1993
• For details see http://www.top500.org/
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Processor Design as Seen in the 
TOP500
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NERSC-1
Cray C90 installed in Dec. 1991

• Cray C90 installed in December 1991
• ended contract with CCC for a Cray-3
• stable high end production platform for seven years 

until 12/31/98
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NERSC- 2
Cray T3E-900 installed in 1996

The 644 processor T3E-900 is one of the most powerful 
unclassified supercomputers in the U.S.
• eight out of twelve DOE Grand Challenge Projects 
compute at NERSC
• 50% of the resource dedicated to GC projects
• about 100 other projects allocated on the NERSC T3E-
900
•1997 GAO report judged NERSC to have the best MPP 
utilization (75%) -- 1999 utilization >90%
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NERSC-3
IBM SP3 installed in 6/99

• New contract with IBM announced in April1999
• IBM was clearly the best value for the primary award

—provides the best absolute performance
—has lowest absolute cost
—provides the best price performance
—provides acceptable functionality
—guarantees performance - low risk
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NERSC-3 Supercomputer

• IBM selected to provide NERSC-3 
(IBM SP3/RS 6000)

• Phase I: June 1999 installation
– 608 processors
– 410 gigaflop peak performance
– Provides one teraflop NERSC capability

• Phase II: December 2000 completion
– 2,432 processors
– 3.2 teraflop peak 

performance
– 4 teraflop total NERSC 

capability
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HPC Systems at NERSC in the 90s

NERSC-1
Cray C90

NERSC-2
Cray T3E

NERSC-3
IBM SP-3

Year of Installation 1991 1996 1999
Number of Processors 16 640 2048
Processor Technology Custom ECL Commodity CMOS Commodity CMOS
Peak System Perform. 16 Gflop/s 580 Gflop/s 3000 Gflop/s
Architecture Shared memory, parallel

vector
Distributed memory 128 nodes with 16

processor SMP
System Fully integrated custom

system
Fully integrated custom
system with commodity
CPU and memory

Loosely integrated
system with commodity
system components

System Software Vendor supplied, ready
on delivery

Vendor supplied,
completed after nearly 3
years development

Vendor supplied,
contractual complete in
about 3 years

Floor space 588 ft 360 ft 4000 ft
Power consumption 500 kW 288 kW 1400 kW
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Impact of Technology Transitions

1994 – 1996 transition 1998 – 2000 transition
Economic Driver Price performance of commodity

processors and memory
16 – 64  CPU “sweet spot” for
SMP technology in the
commercial market place

Advantages of transition Higher performance and better
price performance

Higher performance

Challenges of transition 1) Applications transition to
distributed memory, message
passing model (MPI)

2) More complex system
software (scheduling,
checkpoint restarting)

1) Applications transition to
hierarchical, distributed
memory model (threads +
MPI)

2) New development efforts for
even more complex systems
software

3) Increased cost of facilities
Table 2. Impact of the two technology transitions of the 1990s.
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Three Challenges

• applications that can tolerate an increase in 
communication latency and parallelism as well 
as a distributed, hierarchical memory model 
need to be written

• system software for increasingly complex, more 
difficult to manage, one-of-a-kind systems will 
have to be developed anew

• center management will be forced to take 
creative new approaches to solve the space 
and power requirements for the new systems.
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Performance Increases in the 
TOP500
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Analysis of TOP500 Data

• Annual performance growth about a factor of 1.82
• Two factors contribute almost equally to the annual 

total performance growth 
• Processor number grows per year on the average by 

a factor of 1.30 and the 
• Processor performance grows by 1.40 compared 

1.58 of Moore's Law.  
• For more details see paper by Dongarra, Meuer, 

Simon, and Strohmaier in Parallel Computing (to 
appear)
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The Revolution of 1994 - Major HPC 
Market Realignment

1991  Newcomers with CMOS and MPP technology (Intel, 
TMC, KSR) gain mind share and market share

1993  Cray, IBM, Convex go CMOS (T3D, SP 1/2, SPP 
1000)

1994  TMC, KSR go out of business; SGI’s SMP success

1995  HP buys Convex; Fujitsu, NEC introduce CMOS 
vector machines

1996 SGI buys Cray

1997  TOP500 take over by CMOS complete

2000  Tera buys Cray Division from SGI and renames itself 
Cray Inc.

10
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The Dead Supercomputer Society

• See http://www.paralogos.com/DeadSuper/
• list of 42 dead companies or projects from 1975 -

today
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Since 1997: The New HPC Marketplace

All major US HPC companies are now vertically integrated (SGI, 
IBM, HP, Sun, Compaq), with exception of Cray.

Almost all high-end procudcts are based onworkstation
technology.
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1997: The New HPC Marketplace

All these companies are in the computer business.

HPC customers must get used to a new role:  they are no longer 
the center of attention.

Companies must have committment to technology, and 
understand the potential of technology leverage from the high-
end, in order to remain in the HPC business.

Fortunately for us, the HPC users, they all do understand that (for 
now).
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1997: The HPC Business Model

HPC commercial 

new technology
enables better commercial products

profitable commercial products
enable HPC R&D
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Overview
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• Retrospective: changes in the 1990s
• Extrapolation to the near future up to 2010
• The end of Moore’s Law in about 2020
• Beyond 2025
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Moore’s Law - the traditional (linear) 
view
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Moore’s Wall - the real (exponential) 
view
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Reality Check on Real 
Applications

First complete application to break the 
1Tflop/s sustained barrier in 1998.

Collaborators from DOE's Grand 
Challenge on Materials, Methods, 
Microstructure, and Magnetism.

1024-atom first-principles simulation 
of metallic magnetism in iron
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Extrapolation to the Next Decade
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Analysis of TOP500 Extrapolation

Based on the extrapolation from these fits we predict:
• First 100~TFlop/s system by 2005
• About 1--2 years later than the ASCI path forward 

plans. 
• No system smaller then 1~TFlop/s should be able to 

make the Top500
• First Petaflop system available around 2009
• Rapid changes in the technologies used in HPC 

systems, therefore a projection for the 
architecture/technology is difficult 

• Continue to expect rapid cycles of re-definition.
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2000 - 2005: Technology Options

• Clusters
— SMP nodes, with custom interconnet
— PCs, with commodity interconnect
— vector nodes (in Japan)

• Custom built supercomputers
— Cray SV-2
— IBM Blue Gene
— HTMT

• Other technology to influence HPC
— IRAM/PIM
— Computational and Data Grids
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What Will a 10 Tflop/s System Look 
Like?

• The first ones are already on order
Lawrence Livermore National Laboratory in US
NERSC will have a 3 Tflop/s system in 2000

• Systems are large clusters
SMP nodes in US
Vector nodes in Japan

• Programming model:
OpenMP and/or vectors to maximize node speed
MPI for global communication
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ASCI

ASCI - Accelerated Strategic Computing Initiative
http://www.llnl.gov/asci/

1996 comprehensive testban on nuclear weapons signed;

shift from nuclear test-based methods to computational-based 
methods of ensuring the safety, reliability, and performance of 
nuclear weapons stockpile

create predictive simulation and virtual prototyping capabilities 
based on advanced weapon codes

accelerate the development of high-performance computing far 
beyond what might be achieved in the absence of a focused 
initiative.
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ASCI (cont.)
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CMOS Petaflop/s Solution

• IBM’s Blue Gene
• 64,000 32 Gflop/s PIM chips
• Sustain O(107) ops/cycle to avoid Amdahl bottleneck



36CS267, UC Berkeley

An Alternate Technology?

1 THz
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3M JJ 0.4 um
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•Single Flux Quantum (SFQ)

•Operates at 4 Kelvin
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Hybrid Technology, Multithreaded 
Architecture
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HTMT Machine Room
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4oK

50 W
77
oK

Fiber/Wire 
Interconnects

3 m

0.5 m

220Volts

Nitrogen Helium

Hard Disk

Array

(40 cabinets) 3 m

Tape Silo

Array

(400 Silos)Front End 
Computer 

Server                            

Console

Cable Tray Assembly

Generator

WDM Source

Optical 
Amplifiers

220Volts

980 nm 
Pumps

(20 cabinets)

Generator

HTMT Cross-Section



40CS267, UC Berkeley

2000 - 2005: Market Issues

From vertical to horizontal companies - the Compaq 
model of High Performance Computing

14

SGI IBM HP Sun

MIPS PowerPC PA-RISC SPARC

Origin SP SPP HPC

Irix AIX Solaris

applications software with MPI

sales

Intel others

SGI Compaq HP SunIBM

Linux Solaris

applications software with MPI

mail order retail
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Until 2010: Market Issues

Compaq’s acquisition of DEC was just the first step.
DEC transformed from vertical to horizontal in less 

than one year.
Business transition will be more fundamental than 

previous technology transition.
Tremendous impact on HPC community - no more 

business as usual (e.g. how do we procure 
machines)

Extremely difficult to pick winner
Tumultous transition may make it difficult for 

boutique companies such as Cray, Inc. to survive
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Contributions of Beowulf

• An experiment in parallel computing systems
• Established vision low cost high end computing
• Demonstrated effectiveness of PC clusters for some 

(not all) classes of applications
• Provided networking software
• Provided cluster management tools
• Conveyed findings to broad community
• Tutorials and the book
• Provided design standard to rally community!
• Standards beget: books, trained people, software … 

virtuous cycle

Adapted from Gordon Bell, presentation at Salishan 2000
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Linus’s Law: 
Linux everywhere

• Software is or should be free
• All source code is “open”
• Everyone is a tester
• Everything proceeds a lot faster when everyone 

works on one code
• Anyone can support and market the code for any 

price
• Zero cost software attracts users!
• All the developers write lots of code
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Open Source will change the rules!

• Stage 1: (40s and 50s): every computer different, 
evert program unique

• Stage 2: (60s and 70s): software is unbundled from 
harware, commercial software companies arise

• Stage 3: (80s and 90s): mass market computers and 
mass market software, the notions of software 
copyright and privacy are born

• Stage 4: (2000 and beyond): software migrate to the 
WWW, OSS communities provide high quality 
software, OSS takes over generic software
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Commercially Integrated Clusters 
are Already Happening

• Forecast Systems Lab procurement (Prime contractor 
is High Performance Technologies Inc., subcontractor 
is Compaq)

• Los Lobos Cluster (IBM with University of New 
Mexico)
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Linux super howls 
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Until 2010: New Technology

The software challenge: overcoming the MPI barrier
• MPI created finally a standard for applications 

development in the HPC community
• standards are always a barrier to further 

development
• the MPI standard is a least common denominator 

building on mid 80ies technology 
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Enablers of pervasive technologies

• General accessibility through 
intuitive interfaces

• A supporting infrastructure, perceived valuable, 
based on enduring standards

• MOSAIC browser and World Wide Web are enablers 
of global information infrastructure

Source: Joel Birnbaum, HP, Lecture at APS Centennial, Atlanta, 1999
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Information appliances

• Are characterized by what they do

• Hide their own complexity

• Conform to a mental model of usage

• Are consistent and predictable

• Can be tailored

• Need not be portable

Source: Joel Birnbaum, HP, Lecture at APS Centennial, Atlanta, 1999
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IP On Everything



51CS267, UC Berkeley

In the 2010s: Pervasive 
Computational Modeling

Commodity consumer products
Example: 
MOTOROLA, Pager Division, Boynton Beach, Florida
Applications: Radioss/Parallel Solids

ABAQUS Standard/Explicit
Alias - Render Industrial Designs
EFMASS, MDS, from H.P., MCSPICE

System: 8 CPU POWER CHALLENGE
2 GB Memory, 40GB Disk

Problem: Pager Case
- Battery Containment
- Electronics Integrity
- Display Life

16
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Towards Ubiquitous Computational 
Modeling

1985                                  1990                      1995
specialized hardware      specialized hardware        commodity hardware        

Cray X-MP                         Cray Y-MP             POWER CHALLENGE XL

nuclear weapons lab.        industrial company          industrial company 
unique control resource decentralized divisonal

resource

unique multimillion $      expensive consumer      mass consumer product
product                               product          $1.99

(weapons impact)                         $10K                   (pager/cellular phone)                       
(car crash)

17
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1970 1975 1980 1985 1990 1995 2000 2005 2010
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Cost of Fab

Moore’s Second Law
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Vanishing electrons
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How many bit operation/second can be performed 
by a nonreversible computer executing Boolean 
logic?

• Assume a power dissipation of 1W 
at room temperature

ν = P/kT ln(2) = 3.5 x 1020 bit ops/sec

Computation limit for nonreversible logic
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Power cost of information transfer?

P = nkBT ν2

P

kB

T

d

c

ν

n

= power

= Boltzman constant

= temperature

= transmission distance

= speed of light

= operating frequency

= number of parallel 
operations

d
c
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Rate of nonreversible  information 
transfer

How many bits/second can be transferred?

• Assume a power dissipation of 1W 
and a volume of 1cm3

This is roughly the equivalent 
of 109 Pentiums!

ν =                  = 1018 ops/seccP
kBTd
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Other possibilities?

Molecular nanomechanics:

• DNA, mechanical, chemical, biological

Quantum cellular automata:

• Arrays of quantum dots

Molecular nanoelectronics:

• Chemically-synthesized circuits
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Will history repeat itself?

1939 1999

Technology engine

Disruptive technology

Fundamental research

Impact

CMOS
FET

Quantum state
switch?

Solid state
switch

Purity of
materials

Demise of
vacuum tubes

Demise of
semiconductors

Vacuum
tube

Size & shape of
materials
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Thinking about 2025

• Extrapolation
• “Reading the Clearing” (Denning)
• Scenario planning
• Science Fiction and Wishful Thinking
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Extrapolation: The Long Boom

• Peter Schwartz and Peter Leyden, Wired, July 1997
• global economic boom of unprecedented scale
• continued sustained economic growth
• managing ecological problems
• globalization and openness
• five waves of technology (computers, 

telecommunication, biotech, nanotech
-nology, alternative energy)
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Reading the Clearing: J. Coates,The Highly 
Probable Future c2025 

• 8.4 B, English speaking, personally tagged & identified, 
prosthetic assisted and/or mutant, tense people who have 
access & control of their medical records

• Everything will be smart, responsive to environment.
—Sensing of everything…  challenge for science & 

engineering!
—Fast broadband network
—Smart appliances & AI 
—Tele-all: shop, vote, meet, work, etc.
—Robots do everything, but there may be conflict with labor…

• A “managed”, physical and man-made world
—Reliable weather reports
—“Many natural disasters e.g. floods, earthquakes, will be 

mitigated, controlled or prevented”
• No surprises.  We can see 10 years, but not 20!

Source: Gordon Bell and J. Coates, Futurist, Vol. 84, 1994
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Scenario Planning: Air Force 2025
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Science Fiction and Wishful 
Thinking

• R. Kurzweil, The Art of Spiritual Machines
• Bill Joy,  Why the Future Does Not Need Us, Wired 

March 2000
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